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A large number of physiomic pathologies can produce hyperepitability in cortex.
Depending on severity, cortical hyperexcitability may mafest clinically as a hyperkinetic
movement disorder or as epilpesy. We focus here on dystoniaa movement disorder
that produces involuntary muscle contractions and involve pathology in multiple brain
areas including basal ganglia, thalamus, cerebellum, andemsory and motor cortices.
Most research in dystonia has focused on basal ganglia, wielmuch pharmacological
treatment is provided directly at muscles to prevent contretion. Motor cortex is
another potential target for therapy that exhibits patholgical dynamics in dystonia,
including heightened activity and altered beta oscillatits. We developed a multiscale
model of primary motor cortex, ranging from molecular, up tocellular, and network
levels, containing 1715 compartmental model neurons with mltiple ion channels and
intracellular molecular dynamics. We wired the model base@n electrophysiological
data obtained from mouse motor cortex circuit mapping expements. We used the
model to reproduce patterns of heightened activity seen in ystonia by applying
independent random variations in parameters to identify ghological parameter sets.
These models demonstrated degeneracy, meaning that there are many ways of
obtaining the pathological syndrome. There was no single pameter alteration which
would consistently distinguish pathological from physioigical dynamics. At higher
dimensions in parameter space, we were able to use support v&or machines to
distinguish the two patterns in different regions of space rad thereby trace multitarget
routes from dystonic to physiological dynamics. These redts suggest the use ofin silico
models for discovery of multitarget drug cocktails.

Keywords: dystonia, multiscale modeling, computer simulation , motor cortex, beta oscillations, corticospinal

neurons, multitarget pharmacology, support vector machines
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1. INTRODUCTION plasticity may actually exacerbate the abnormal movements
(Sanger et al., 2003; Neychev et al., 2008; Casellato ét14)., 2
A large number of physiomic pathologies can produce There are at least two, and perhaps more, cerebello-thalamo-
hyperexcitability in cortex. In motor cortex, this hyperetediility  striato-cortical loops that play a role in movement disorders.
will manifest as alterations in movement and muscle toneThere may also be additional contributions from still longer
At the most extreme, hyperexcitability leads to a seizuré wit|oops involving recurrent connections from spinal cord orrito
uncontrolled movement, as seen in epilepsia partialis contisua muscle spindles. One or more of these sites may have associated
Lesser hyperexcitability produces a variety of hyperactivgathology. Regardless of the locus of primary pathology,
movement disorders, including tics, chorea, tremor, ethp®e  muiltiple sites are potential targets where therapy could intetr
pathophysiology is not restricted to cortex, butinvolves tiplé  pathophysiological dynamics. Currently, brain pharmacoépsr
brain areas including basal ganglia, thalamus, cerebeland  often fails and patients are treated with botulinum toxin to
others. We focus here on dystonia, a movement disorder thafartially paralyze muscles by blocking nicotinic cholinergic
produces prolonged involuntary muscle contractiom&ychev  transmission at the a ected muscle. Another treatment is deep
etal., 2008; Crowell et al., 2012 brain stimulation using implanted electrodes. In this papeg w
The large variety of dystonias of dierent etiologies maytake two or three steps back from the level of muscle treatment
present with involvement of one or several parts of theby proposing interventions at the level of motor cortex.
body. Pediatric causes of dystonia include cerebral palsy and Complex multifocal diseases may require complex multitarget
are generally distinct from adult-onset cases. Common tadutreatments YViayna et al., 2003 In the context of brain disease,
dystonias are torticollis, causing involuntary head tugi and  multitarget therapy can hit multiple brain regions or multiple
movement-overuse dystonias such as writers cramp. Despiteceptors in a region or both. High-level models that include
these di erences, dystonias in di erent patient populations aremany brain areas can assist in understanding how di erent
primarily treated with the same therapies. While most resiearcbrain areas contribute to a disordeSg¢nger and Merzenich,
in dystonia has focused on basal ganglia, much pharmacalogic2000; Sanger, 2003; Hendrix and Vitek, 2012; Kerr et al.,
treatment is provided directly at muscles. Similarly, we ps#po 2013. However, these models typically lack biological detail,
that treatment could be targeted elsewhere in the motomaking them unsuitable for assessing the impact of specic
pathway, here focusing on motor cortex as a potential target fopharmacological manipulations. Detailed models are not yet
therapy. elaborated to the point of handling multiple brain areas but do
As with many other movement disorders, the dystoniasprovide the details needed to assess pharmacological imtéwae
generally lack a reliable biomarker and are diagnosed byore directly.
semiology, the assessment of signs and symptoms. However, al Single agent treatments for disease are traditionally deste
dystonias feature excessive muscle activation that isiassd in vitro or in vivo. As noted above, single agent treatments
with hyperactivity in multiple motor areas associated withfor dystonia have not had much success. There is, however,
movement activation. Electrophysiological studies of oyt the potential for success with multitarget drug cocktailsitth
patients con rms a pattern of hyperactivation in cortex. Hésit could target multiple locations in the brain, or multiple drug
individuals show low beta oscillations {5-20 Hz) in motor receptor targets at a single location, or bothe(nooz and
cortical local eld potential (LFP). This beta is reduced invan de Warrenburg, 20)2Due to combinatorial explosion,
amplitude and synchrony during movemenlisper and Pen eld, evaluating combinations of drugs in di erent dosages in this
1949; Pfurtscheller and Aranibar, 1979; Crone et al., 198r  way can not be readily done in tissue and is most feasible
et al., 200). In dystonia patients, motor cortex shows increasesilico(Viceconti et al., 2008; Kohl and Noble, 2009; Lytton et al.,
in neuronal activity levelsNobrega et al., 1995; Pratt et al.,2014; Action, 2016; Viceconti et al., 201 this study, we use
1999, with relatively high beta amplitude and high functional our detailed multiscale model of primary motor cortex to asse
connectivity at the beta frequenc§¢hnitzler and Gross, 2005; potential multitarget pharmacological therapies for treatref
Jin et al., 201)1 There is also excessive neural synchrony bothlystonia. The model contains 6 cortical layers with multiple
at rest and in certain phases of movemefib(o et al., 1994; classes of excitatory and inhibitory neurons, using wiringezh
Kristeva et al., 2005; Mallet et al., 2008; Crowell et al.2)20 on mouse microconnectomic dataljipp, 2005; Weiler et al.,
Some dystonias, in common with several other movement008; Kiritani et al., 2012; Hooks et al., 2)IBxcitatory neurons
disorders, are thought to have their origin in the basal deng contain intracellular molecular mechanisms that contrigub
Other dystonias, such as those associated with cerebral palsgrsistent activity and hyperexcitabiliti €ymotin et al., 201
and with movement overuse, probably have a strong corticafhese mechanisms include endoplasmic reticulum associated
component. In all cases, however, the interconnections ainbr calcium stores released by activation o8, and ryanodine
motor systems makes it clear that multiple brain areas willibe * receptors, both with anity for caeine, an agent that can
the loop” of abnormal activity. Following some primary insult exacerbate dystonia symptomRi¢hter and Hamann, 2001
or insults to a brain area, a secondarily-involved braineangll  Plasma membrane calcium, sodium, and potassium channels also
contribute further to the disorder by reacting to the altdoms  contribute to cellular excitability.
in input activity through its own homeostatic responses. Imso Since our model does not include spinal cord and muscle, we
cases these homeostatic changes may be compensatory so agetfed dystonia pathology as a state of cortical hyperadtivat
reduce the severity of the symptoms. However, in other casesharacterized by increased beta oscillations with exeessid
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hypersynchronous ring in layer 5 corticospinal neurons. Bee kinetics (jp, of 1 s). Baseline mGIuR synaptic weight was
layer 5 neurons project downward to brainstem and spinal cordnormalized to represent the increase in the amount of glutamate
and their sustained ring would lead to the increased musclébound to mGIuR. Extracellular glutamate did not di use but
contractions of dystonia. We distinguished the hyperexiliiy ~ was represented by a local Glu value that was incremented in
of dystonia from the still greater hyperexcitability of azee by response to an event delivered due to a presynaptic spike. Glu
excluding simulations that showed higher levels of agtiwiith  showed bind/unbind kinetics on mGIuR and was eliminated by
higher frequency oscillation and a strong tendency to Hatp” rst-order degradation (lower left oFigure 10).

through multicell depolarization blockadéytton and Omurtag, The ER C& model involves IR receptors (IBRs), ryanodine
2007. Classi cation in 11-dimensional space demonstrated thateceptors (RYR)$neyd et al., 2003SERCA pumps, and a &a

we could identify di erent regions in parameter space for thesdeak. IRR dynamics involved a slow &ainactivation binding

di erent states—baseline normal, dystonia, epileptiform-etan site state Pe Young and Keizer, 1992; Li and Rinzel, 1094
predict pharmacological combinations that would lead fromThe SERCA pump is a pump rather than a channel and so is
pathology back to the physiological activity state. As in oumodeled with Hill-type dynamics. Calcium bu ering followed
previous investigations of epilepsyy(ton and Omurtag, 2007 CaC B) 5,
we found multiple parameter combinations that were consisten 0.510 4
with the pathological state, as well as multiple parametetoe cients D D 0.043 m2?=msfor both B and CaB about half
combinations to produce our baseline physiological statehSu the rate of C&di usion (Anwar et al., 2012 Calcium extrusion
parameter degeneracy is typical of complex neural systeragross the plasma membrane was modeled by rst-order decay
(Edelman and Gally, 2001; Golowasch et al., 2002 with exD 5 ms.

CaBwhereB is di usible bu er with di usion

2. MATERIALS AND METHODS 2.2. Synapses
AMPA/NMDA synapses were modeled by standard NEURON

Network simulations consisted of 1715 reduced compartmentadouble-exponential mechanismsTable 2. All  excitatory
cell models with single compartments for inhibitory cellsprojections were mixed AMPA (rise,decay 0.05, 5.3 ms) and
and ve compartments for pyramidal cells, arrayed by layeNMDA (rise,decay : 15, 150 ms). NMDARs were scaled by
with connectivity taken from experimental results on motor 151 C 0.28 Mg exg 0.062 V)); Mg D 1mM (Jahr and
cortex (\Veiler et al., 2008Figures 1A,B. Parallel-conductance Stevens, 199013% oflnmpa Was carried by C& (Spruston
electrophysiological simulation in the pyramidal cells wasetal., 1995 AMPA and NMDA receptors had reversal potentials
complemented by chemophysiological simulation focused oaf0mV.
C&C handling, based on our prior modelsleymotin et al., 2015, Inhibitory synapses were mediated by GABAnd GABAs
2016 Figure 10). receptors. GABA synapses were modeled with a double-

Simulations were run in the NEURON (version 7.4)exponential mechanism. The GABAsynapse had second
simulation environment Carnevale and Hines, 20D@tilizing ~ messenger connectivity to a G protein-coupled inwardly-
the reaction-di usion (RxD) Python moduleN|cDougal et al., rectifying potassium channel (GIRK). LTS cells connected to
2013a,) and NMODL (Hines and Carnevale, 2000Two apical dendrites of PYR cells using GABreceptors (GABAR;
seconds of simulation time took 3 min using 24 nodes rise,decay: 0.2, 20 ms) and GABAreceptors (GABAR) and
on a Linux cluster with parallel NEURON, run with a ontosomata of FS and other LTS cells with GABRs (rise,decay
xed time-step of 0.1 ms. The full model is available on : 20,40 ms). GABARSs had reversal potentials 080 mV, and
ModelDB (https://senselab.med.yale.edu/ModelDB/ShowModelZABAgRs 95 mV. GABARS provide longer-lasting activation
cshtml?model=189154). compared to GABARs.

We brie y describe the scales of the multiscale model from
smaller to larger in the following sectiongaple 7). For more  2.3. Cell Scale
details, readers are referred to our previous paprsy(motin ~ The network consisted of pyramidal cells (PYR; 3 apical

etal., 2015, 20)6 dendrite compartments, 1 basal dendrite compartment, 1 samat
compartment), fast spiking soma-targeting interneurons, @&
2.1. Intracellular Molecular Scale compartment) , and dendrite-targeting low-threshold spitsin

Our C&C dynamics Figure 10, are based onNeymotin interneurons (LTS; one compartmentiVang and Buzsaki,
et al., 201 We modeled a one-dimensional RxD system 0f1l996; Wang, 2002; Monyer and Markram, 2004; Bartos et al.,
intracellular neuronal C% signaling in all compartments 2007; Neymotin et al., 2011a Tables 3 4). Reaction-di usion
of neocortical pyramidal (PYR) neurons. Within eachmechanisms (C%,IP3,bu er) were restricted to the PYR cells
compartment, we modeled cytosolic and endoplasmic reticulunm this network. Properties of pyramidal neurons in the di erten
(ER) sub-compartments by using a fractional volume for each. layers were identical except for apical dendrite length whsch
IP3 was produced through a reaction sequence initiatedonger in deep pyramidal neurons than in super cialdy et al.,
by glutamate binding to the metabotropic glutamate recepto2011; Castro-Alamancos, 201900 min L5-6; 450 min L2/3
(mGIuR), based on a reaction scheme developeddiyhad and and L4.
Narayanan (2013{ModelDB #150551). ¥ diused outward Voltage-gated ionic current models were based on prior
from the synapse location and decayed following rst-ordermodels of our own and othersMcCormick and Huguenard,
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A C Extracellular Cytosol ER

E6C "== 16 9"
\ y = 1,6 < Spinal Cord

degrade

FIGURE 1 | Model schematics. (A,B) Motor cortex architecture. Circles represent neuronal poplations (red: excitatory cells; green: fast-spiking inteeurons; blue:
low-threshold ring interneurons). Circle size denotes nuier of cells in population. Lines (with arrows) indicate carections between the populations. Thickness of
lines proportional to synaptic weights. E cells synapse witAMPAR/NMDARSs; | cells synapse with GABAR / GABAgRs. Circles with self-connects denotes recurrent
connectivity. (A) Excitatory connections. E5P projects to spinal cord (not mdeled). (B) Inhibitory connections.(C) Chemical signaling in pyramidal cells showing uxes
(black arrows) and second- (and third- etc) messenger modation (red back-beginning arrows). We distinguish membragassociated ionotropic and metabotropic
receptors and ion channels involved in reaction schemes ired (in reality, it is likely that almost every membrane-boudnprotein is modulated). External events are
represented by yellow lightning bolts—there is no extrackllar diffusion; the only extracellular reaction is glutaate binding, unbinding, and degradation on mGIuR1
after an event. C#£C is shown redundantly in blue—note that there is only one G& pool for extracellular, 1 pool for cytoplasmic, and 1 pool foER (PLC,
phospholipase C; DAG, diacyl-glycerol; cAMP, cyclic adensine monophosphate; PIR, phosphatidylinositol 4,5-bisphosphate). Adapted from Fyure 1 of Neymotin

et al. (2016).

1992; Migliore et al., 2004; Stacey et al., 2009; Neymotih,et aemperature of 37C. Q10 D 3 was used when no experimental
2011b,a, 20)3 Voltage sensitive channels generally followedralue was available. All cells contained leak current, tesms
the Hodgkin-Huxley parameterization, wherel#® D (x1 sodium currentiyg, and delayed recti er currenc pr, to allow
X)=x (X D m for activation particle anch for inactivation for action potential generation. Additionally, PYR cells cained
particle). Steady-statq and time constanty are either related in all compartmentsk a,lk wm providing ring-rate adaptation

to channel opening (V) and closing kinetics (V) asxg D  (McCormick et al., 1993 Pyramidal cells also halg, voltage-
=( C ), x D 15 C ), or are directly parameterized: gated calcium channels (VGCCs) in all compartmenis:IT,

x1 (V), x(V). Kinetics for channels were scaled byoQrom Iy (Kay and Wong, 1987; McCormick and Huguenard, 1992;
an experimental temperature (where available) to simulatiorsa ulina et al., 2010; Neymotin et al., 2),land SK and BK
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TABLE 1 | Summary of model.

Property Description

Populations 13; 7 E and 6 |, corresponding to layer 2/3, 4, 5A, 5Band 6
of M1

Topology 3D with cortical depth (y) based on M1 laminar distsution,
horizontal location (x,z) randomly distributed

Connectivity Probability of connection and weight depend®n layer and

Neuron model

Synapse model
Plasticity
Input

Measurements

cell type

Multichannel multicompartment (E cells alsox®
mechanisms)

AMPA, NMDA, GABA, GABAg, mGIuR

Independent random Poisson spike trains with xed rate
depending on cell type/synapse

Membrane potential, spiking activity, synalnization, ring
vector correlations

E (1) denote excitatory (inhibitory) neurons. No plasticity modeled @la format based on

Nordlie et al., 2009.

TABLE 2 | Summary of synapse models used to connect neurons.

Label Description

AMPA Double exponential

NMDA Double exponential with voltage dependence

GABAy  Double exponential

GABAg  2nd messenger connectivity to a G protein-coupled inwardlyectifying
potassium channel (GIRK)

mGIuR 2nd messenger signaling producindP3

TABLE 3 | Summary of neuron models.

Label Description

Dynamics Multichannel compartmental Hodgkin-Huxley (p&iRxD
mechanisms)

Compartments E: 5 (soma, basal dendrite, 3 apical dendritgs

Compartments I: 1 (soma)

lon channels E: leakNas, Kgr, Ka, Kp, Ky, HCN, CaL, CaN, CaT,SK,
BK

lon channels I: leakNag, Kgr, HCN, Cal, Ky

RxD molecules

RxD compartments
RxD channels

E: C&C, IP3, B (C&C buffer),CaB (C&2C-bound
Ca2C-puffer)

E: endoplasmic reticulum, cytosol
E: leak, RyRIP3R, SERCA

E (I) denote excitatory (inhibitory) neurons. Reaction-diffusion X[®) mechanisms/
compartments described more fully in intracellular scale.

calcium-activated potassium currentggs). LTS cells contained

IL, non-C&-dependenty, SK, and C¥ decay.
HCN channels in di erent cell types have somewhat di erentFino and Yuste, 2011; Apicella et al., 2012; Kiritani et al.,

voltage dependence and di erent kinetié¢ssgiwara and Irisawa, 2013. Individual neurons were placed randomly with uniform

1989; Schwindt et al., 1992; Chen et al., 2001; Wang et aistribution. Weights from E cells displayed ifable 6 are for

2002; Robinson and Siegelbaum, 200he hyperpolarization-

Winograd et al. (2008Y{ModelDB #113997), and modi ed to
provide the faster voltage-sensitivity time constants found i
cortex (Harnett et al., 201 and provides PYR cells longer-
lasting ring activity via augmentation of the HCN channel
conductance. The mechanism for €aregulation of HCN
channels in PYR cells inVinograd et al. (2008)s modeled
empirically in order to produce the relationship between
cytosolic C&° levels andl}, activation without simulating the
details of C&° e ects on adenyl cyclase (see schematidfGN
chanin Figure 10).

& was 0.0025 8i? in PYR soma, basal dendrites and
exponentially-increasing in apical dendrites with distancerf
soma with 325 m space constant, henedold augmented at 325
microns as described bi§ple et al. (2006)Apical dendritdk pr,

Ik A, lk wm density also increased with the same length constant,
based on data showing HCN and Kv channel colocalization
(Harnett et al., 2015, 20).3

2.4. Network Scale

The network consisted of 1715 cell$able 4. The network
contained 157,507 synapses for an overall connection density
of 5% (seeTable §. PYR cells synapsed onto each-others
dendrites. PYR-to-PYR synaptic locations on the dendriteewe
randomized between basal and apical compartmekitsrkram
etal., 199Y. PYR cells synapsed onto somata of FS and LTS cells
(single-compartment models).

Neuronal populations were arranged by cortical layer based
on our prior models Neymotin et al., 2011a,c; Chadderdon
et al.,, 2014; Neymotin et al., 2Q1evith additional data from
direct measurements from mouse motor cortexh{pp, 2005;
Weiler et al., 2008; Kiritani et al., 2012; Hooks et al., 2048d
recent experiments which demonstrate a thin layer 4 in mouse
motor cortex (Yamawaki et al., 20)4The network consisted
of 13 populations of 3 excitatory cell types, intratelencephalic
(IT), pyramidal-tract (PT), and corticothalamic (CT), and 2
inhibitory cell types, low-threshold spiking (LTS) and fast-
spiking (FS). These were distributed across cortical lay&s 2
4, 5a, 5b, and 6Harris and Shepherd, 20),5vith cell numbers
for each population based on estimated cell densities and
volume (Table 4. The volume of each population was calculated
assuming a horizontal area (x and z dimensions) of 12020

m, and a layer-dependent cortical depth range (y dimension).

Connection probabilitiespj (Tables§ 6) of presynaptic
excitatory populations were dependent on pre- and pothst-
synaptic type and layer. For presynaptic inhibitory populations,
connection proBabiIities inversely scaled based on distance
pi D B exp( (dx?C dz?)=15), in x, z plane perpendicular
to the y-direction of layering. Connection probabilities can
weights are based on data from rodent motor cortex mapping
(Weiler et al., 2008; Lefort et al., 2009; Anderson et al.0201

the AMPA synapses, with colocalized NMDA weights at 10% of

activated HCN current, used in pyramidal cells was modeled AMPA weights. Synaptic delays were randomized between 1.8
with second messenger and calcium dependence taken froamd 5 ms with additional delay based on distance.
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TABLE 4 | Network Population, including normalized and nomina | cortical depth range (ynormRange, yRange, neuron density, and number of cells).
Label Description ynormRange yRange (um) Density (cells/mm 3) numCells
E2 Layer 2/3 PYR IT excitatory neurons 0.12-0.31 160-420 80,00 300
E4 Layer 4 PYR IT excitatory neurons 0.31-0.42 420-570 80,000 173
12 Layers 2/3 FS interneurons 0.12-0.31 160-420 10,000 37
12L Layers 2/3 LTS interneurons 0.12-0.31 160-420 10,000 37
E5a Layer 5a PYR IT excitatory neurons 0.42-0.52 570-700 800D 150
E5b Layer 5b PYR IT excitatory neurons 0.52-0.77 700-1040 4000 196
E5P Layer 5b PYR PT excitatory neurons 0.52-0.77 700-1040 4000 196
15 Layers 4 and 5 FS interneurons 0.31-0.77 420-1040 10,000 89
I5L Layers 4 and 5 LTS interneurons 0.31-0.77 420-1040 10,000 89
E6 Layer 6 PYR IT excitatory neurons 0.77-1.0 1040-1350 40,0 179
E6C Layer 6 PYR CT excitatory neurons 0.77-1.0 1040-1350 4000 179
16 Layer 6 FS interneurons 0.77-1.0 1040-1350 10,000 45
16L Layer 6 LTS interneurons 0.77-1.0 1040-1350 10,000 45

PYR, pyramidal; IT, intratelencephalic; PT, pyramidal tract; CT, cortithalamic; FS, fast spiking, LTS, low-threshold spiking.

TABLE 5 | Summary of network connectivity rules. Means and standard deviations diered for the dierent
— parameters and were selected to allow each simulation to
Property Description . K . . .
maintain activity. A subset of the simulations was used fa th
Eto E Pij, Wij dependent on pre-/post-synaptic cell type/layer analyses dexnbe@fa(ble 7) o . . .
Etol pij, wi dependent on pre-synaptic cell layer, and post-synaptic ct We ran simulations with initial calcium co_ncentratlon_ |n_dah
typellayer ER set to 1.25 mMRygrave and Benedetti, 1990 mimic
Ito E pjj decreases exponentially with x,z plane distance between the e ects of ER calcium priming via prior excitatory synaptic
pre-/post-synaptic neurons; xed wj; stimulation (Ross et al., 2005; Hong and Ross, 2007; Fitzpatrick
All delays Randomized 1.8-5 ms with additional delay basedrodistance etal., 2009; Neymotin et al., 2016

We categorized the simulations into distinct groups by noting
major di erences in activity across parameter sefalfe 8.
From the full set of 5867 simulations, 1505 did not display
any ring due to random variations in ion channel densities

Background activity was simulated by excitatory andyhich led to low neuronal activity Table 7. The remaining
inhibitory synaptic inputs following a Poisson process, seni341 simulations werdctive due to higher neuronal activity,
to all cells, representing ongoing drive from other corticale_g_, partially caused by the higher averbige density in these
areas and other inputs. These inputs were selected to maintafimylations. Of these 4341 Active simulations, 1077 esebi
low-frequency ring of neurons within the model, which would gpjjeptic latch-up dynamics—periods of intense activity which
not re otherwise, due to small network size and the requilsTh g to depolarization blockad®aC channel inactivationt.ytton
for multiple synaptic inputs to trigger a postsynaptic spikegng Omurtag, 2007 These periods where neurons did not
(Neymotin et al., 201)a The strength of these background e |asted 200-300 ms (gaps between E5P spikes: ESP gap in
inputs was not based on the full source of inputs from alltapie §. We categorized the top and bottom 2nd percentile of
upstream brain areas, since these inputs are not completelije Active/non-latch-up simulations ranked by E5P ringtea

pij denotes probability of connection between type i and j; ydenotes weight. Parameters
by pre- and post-synaptic type inTable 6.

mapped. into dystonia (i D 65) and physiologicaln( D 65) sub-sets.
We used E5P ring rate as a criterion for dystonia classi oati
2.5. Simulation Variations because E5P neurons project downward to brainstem spinal cord,

We ran over 5800 simulations, randomly varying each of thénd sustained overactive E5P ring can lead to the tonic neisc
following parameters using an independent normal distribnti ~ contractions symptomatic of dystonia.

1. E neuron mGIuR density (mGIuR); 2. E neuron ER RYR

density (RYR); 3. E and | neuron HCN channel density; 42.6. Data Analysis

E and | neuron fast Na channel density Na); 5. E neuron We formed multiunit activity (MUA) time-series, which count
Kgr channel density; 6. E neuroi, channel density; 7. E the number of spikes in each bin (10 ms) for a given
neuron Kp channel density; 8. E neuroldy channel density; population. To calculate neuronal population rhythms, we
9. E neuronSK calcium-activated potassium channel densitytook the power spectral density (PSD) of the mean-subtracted
10. E neuronBK calcium-activated potassium channel density;MUA time-series; we then calculated the peak frequencies and
11. E and LTS neuron voltage-gated calcium channel (VGCGmplitudes in the PSD. We used the average Kendaltion-
density. parametric rank-correlation coe cient Kendall, 1938; Knight,
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TABLE 6 | Network Connectivity Parameters.

Pre Post Dy wij (nS) Pre Post D wij (nS) Pre Post D wij (nS)
12L 12L 1.00 0.150 12L 12 1.00 0.150 12L E2 1.00 0.225
12L E2 1.00 1.688 12 12L 1.00 0.150 12 12 1.00 0.150
12 E2 1.00 0.225 E2 12L 0.19 0.117 E2 12 0.19 0.117
E2 E2 0.15 0.160 E2 E4 0.11 0.092 E2 I5L 0.22 0.151
E2 15 0.02 0.017 E2 Eb5a 0.05 0.126 E2 E5b 0.01 0.111
E2 E5P 0.07 0.111 E4 12L 0.02 0.054 E4 12 0.02 0.054
E4 E2 0.05 0.184 E4 E4 0.15 0.160 E4 I5L 0.03 0.018
E4 15 0.19 0.162 E4 Eba 0.04 0.160 E4 E5b 0.01 0.225
E4 ESP 0.01 0.225 E4 16L 0.02 0.066 E4 16 0.02 0.066
E4 E6C 0.00 0.477 E4 E6 0.00 0.477 I5L E4 1.00 0.225
I5L E4 1.00 1.688 I5L I5L 1.00 0.150 I5L 15 1.00 0.150
I5L Eb5a 1.00 0.225 I5L E5a 1.00 1.688 ISL E5b 1.00 0.225
I5L E5b 1.00 1.688 I5L E5P 1.00 0.225 I5L E5P 1.00 1.688
15 E4 1.00 0.225 15 I5L 1.00 0.150 15 15 1.00 0.150
15 E5a 1.00 0.225 15 E5b 1.00 0.225 15 ESP 1.00 0.225
Eba 12L 0.02 0.054 Eba 12 0.02 0.054 Eba E2 0.04 0.131
Eba E4 0.03 0.104 Eba I5L 0.03 0.018 E5a 15 0.19 0.162
Eba Eba 0.18 0.143 Eba E5b 0.01 0.208 Eba E5P 0.02 0.208
E5a 6L 0.02 0.066 Eba 16 0.02 0.066 Eba E6C 0.01 0.081
Eba E6 0.01 0.081 E5b 12L 0.02 0.054 E5b 12 0.02 0.054
E5b E2 0.02 0.059 E5b E4 0.03 0.043 E5b I5L 0.03 0.018
E5b 15 0.19 0.162 E5b Eba 0.05 0.080 E5b E5b 0.18 0.171
E5b ES5P 0.04 0.171 E5b 16L 0.02 0.066 E5b 16 0.02 0.066
E5b E6C 0.02 0.122 E5b E6 0.02 0.122 E5P 12L 0.02 0.054
E5P 12 0.02 0.054 E5P I5L 0.03 0.018 E5P 15 0.19 0.162
E5P E5P 0.18 0.171 E5P 6L 0.02 0.066 E5P 16 0.02 0.066
6L 6L 1.00 0.150 6L 16 1.00 0.150 6L E6C 1.00 0.225
6L E6C 1.00 1.688 6L E6 1.00 0.225 6L E6 1.00 1.688
16 6L 1.00 0.150 16 16 1.00 0.150 16 E6C 1.00 0.225
16 E6 1.00 0.225 E6C I5L 0.02 0.037 E6C 15 0.02 0.037
E6C E5a 0.03 0.034 E6C E5b 0.03 0.077 E6C ESP 0.03 0.077
E6C 6L 0.02 0.080 E6C 16 0.02 0.080 E6C E6C 0.03 0.133
E6C E6 0.02 0.133 E6 I5L 0.02 0.037 E6 15 0.02 0.037
E6 Eba 0.03 0.034 E6 E5b 0.03 0.077 E6 E5P 0.03 0.077
E6 6L 0.02 0.080 E6 16 0.02 0.080 E6 E6C 0.02 0.133
E6 E6 0.03 0.133

Py and w; are distance-independent probability of connections from Pre to Post neuraal types and synaptic weights, respectively.

1966 between pairs of neuron binned spike train time-seriedime-series. We used the Python scikit-learn libraRe(iregosa
for calculating the synchronization of populations of neuronset al., 201)L.for performing principal component analysis (PCA)
(denoted population-synchrony). Kendall's non-parametric and support-vector machine (SVM) classi catio@¢rtes and

rank correlation, de ned as: Vapnik, 1995; Orru et al., 20).2Dystonia and physiological
simulation classes were characterized on the basis of layer

Ne Nd . 5 corticospinal pyramidal neuron (E5P) ring rates. The
%n(n 1)’ clearest examples of both classes (bottom/top 2nd percentiles

as physiological/dystonia classes) were used for the majority
is used with these data. Kendall'sis a normalized di erence of the analyses described in the ResuFsgy(res 3-8). The
between concordantng) and discordant pairs ny); ties are NuSVC variant of SVMs was used to classify physiological and
taken into account by the normalizing term%n(n 1) , dystonia simulations and to nd which simulation parameters
which represents the total number of ordered pairs in thecontributed the most to classication accuracy. SVM inputs
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TABLE 7 | Parameter ranges (average standard deviation) for all simulations ( n D 5867), active simulations ( n D 4341), latch-up simulations ( n D 1077),
active/non-Latch-up simulations ( n D 3264), physiological simulations ( n D 65), and dystonia simulations ( n D 65).

Parameter All Active Latch-up
mGIuR 8.06 6.44 8.02 6.43 8.04 6.34
RYR 108.54 86.99 109.74 86.74 112.03 86.98
HCN 0.0025 0.0003 0.0026 0.0002 0.0026 0.0002
Nag 0.0809 0.0081 0.0829 0.0074 0.0856 0.0072
Kar 0.0209 0.0053 0.0202 0.0052 0.0216 0.0054
Ka 0.3000 0.0150 0.2977 0.0147 0.2967 0.0144
Kg 0.0009 0.0002 0.0008 0.0002 0.0008 0.0002
Km 1.002e-05 2.48e-06 le-05 2.49e-06 1.001e-05 2.51e-06
SK 0.0001 6.163e-05 0.0001 6.18e-05 0.0001 6.296e-05
BK 0.0030 0.0015 0.0030 0.0015 0.0031 0.0015
VGCC 0.0052 0.0035 0.0053 0.0035 0.0051 0.0035
Parameter Active/Non-Latch-up Physiological Dystonia
mGIuR 8.02 6.45 8.42 6.54 8.12 5.74
RYR 108.99 86.66 105.1 829 116.64 77.11
HCN 0.0026 0.0002 0.0026 0.0002 0.0026 0.0003
Nas 0.0820 0.0073 0.0787 0.0053 0.0879 0.0076
Kar 0.0198 0.0051 0.0226 0.0041 0.0195 0.0054
Ka 0.2981 0.0148 0.3029 0.0144 0.2992 0.0136
Kg 0.0008 0.0002 0.0008 0.0002 0.0008 0.0002
Km le-05 2.48e-06 1.034e-05 2.42e-06 1.021e-05 2.81e-06
SK 0.0001 6.135e-05 0.0001 6.797e-05 0.0001 6.604e-05
BK 0.0030 0.0015 0.0034 0.0013 0.0025 0.0015
VGCC 0.0054 0.0035 0.0058 0.0032 0.0046 0.0031

Plasma membrane ion channel conductance density values are in Ste2. mGIuR and RYR density are in arbitrary units used to scale channel cductance.

TABLE 8 | Dynamic measures (average standard deviation) for All simulations ( n D 5867), Active simulations ( n D 4341), Latch-up simulations ( n D 1077),
Active/Non-Latch-up ( n D 3264), physiological simulations ( n D 65), and dystonia simulations ( n D 65).

Dynamic measure All Active Latch-up Active/non-latch-up Phy siological Dystonia

E5a rate (Hz) 0.65 0.52 0.88 0.41 1.09 0.37 0.81 0.40 1.34 0.1 0.85 0.39
E5b rate (Hz) 1.68 121 2.27 0.79 2.45 0.66 222 0.82 1.18 0.28 3.74 2.08
E5P rate (Hz) 7.10 5.62 9.59 4.32 7.77 2.68 10.19 4.59 1.77 0.26 2259 2.67
15 rate (Hz) 11.46 6.99 1549 1.89 15.14 1.28 15.61 2.04 11.47 0.72 17.67 0.90
I5L rate (Hz) 581 3.71 7.85 161 7.13 1.19 8.09 1.66 5.37 0.76 1342 1.82
E5P synchrony 0.35 0.25 0.47 0.16 0.47 0.12 0.47 0.17 0.07 0.06 0.75 0.05
E5P MUA freq. (Hz) 14.78 8.91 19.97 1.94 19.72 1.79 20.05 1.99 2091 311 20.55 0.88
E5P MUA amp. (AU) 83.0 100.1 1121 1014 59.8 48.1 129.4 108.1 1.9 1.2 527.0 161.7
E5P MUA beta amp. (AU) 21.0 264 283 27.1 159 11.9 324 294 08 0.7 111.2 64.9
E5P gap 79.13 70.95 106.94 61.87 190.23 32.94 79.46 41.10 62.77 24.85 21.75 3211
E5P FV sim 0.20 0.14 0.27 0.09 0.24 0.06 0.28 0.09 0.13 0.03 0.44 0.08

E5P gap measures number of 300 ms gaps between individual ESP neuron rintimes; ESP MUA amplitude and E5P MUA beta amplitude in arbitrary units; ESP FV sim aseires
similarity between E5P population ring rate vectors using average paiige Pearson correlation.

were vectors consisting of normalized parameter valuesh Eaa grid search withN-fold cross validation run 10 times for
of these input vectors was labeled into either of two distinceach combination of parameters. SVM classi cation accuracy
binary classes: physiological (0) or dystonia (1). SVM patareg surpassed the accuracy of other machine learning methods,
including kernel type (linear, polynomial, radial-basis @tion), including logistic regression (not shown). Figures weraven

, tolerance, , and polynomial degree were selected usingvith Matplotlib (Hunter, 2007.
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3. RESULTS increased beta rhythm amplitudeFigure 2B), however with
3.1. Simulation Overview substantial variability. Peak oscillatory frequency wasdh

W 5800 K simulati domiz 11re|atively stable across simulationable 8. Physiological
e ran over network  simulations, randomizing 1l,,q enijeptiform simulations had lower overall E5P synchrony

ion channel/receptor densities independently. A typical 2 2nd beta power compared to the dystonia simulations, which
simulation took 3 min using 24 cores on Linux with parallel occupied the upper-right quadrant Gigure 28 '

NEURON. After running simulations, we calculated neuronal ESP FV similarity showed temporal recurrences which

population ring rates, synchronization, and power Spectra. ¢ her distinguished the three simulation typefigure 20).
L . The physiological simulation showed intermediate self-kinity
3.2. Characterization of Dystonia (0.17) due to sparse ring of di erent subsets of pyramidal cells
Pathophysiology at dierent times. In contrast, the dystonia simulation ri
Simulations were grouped into physiological and pathologicapatterns showed strong self-similarity (0.56) and recureenc
based on dierences in ring patterns Table 8 Figure 2).  over time (recurring orange/red blobs frigure 20, indicating
1505 of 5867 simulations produced no activity. The remainingtereotyped dynamics. The example epileptiform simulation
simulations were characterized as physiological or pathcébg showed relatively weak self-similarity (0.16) due to its two
Pathological simulations showed increased activity. Higldistinct ring patterns: high E5P synchrony alternating it
activity alternating with latch-up condition was de ned E5P silence produced by depolarization blockade. Epileptiform
as an epileptiform simulation with periods of 200 ms of and dystonia simulations showed a brief period of high
depolarization blockade across multiple cells (1077 sirarig).  similarity when the epileptiform simulation showed strong
1077 simulations were classi ed as epileptiform based oniacti  oscillations during the initial period. There was weak simiija
latch-up resulting in sustained periods. The dierent classe between epileptiform and physiological (0.12) and dystonia
of simulations formed distinct clusters in multiple slice$ o and physiological (0.22) simulations, indicating that both
excitatory corticospinal (ESP) activity feature-spaeigre 2.  pathological dynamics were distinct from the physiological.
Physiological simulations showed E5P rate® Hz with low E5P neurons in a representative physiological model red
to intermediate ESP ring vector (FV) similarity. Dystonia sparsely with low synchrony (population-synchromy 0.01;
simulations primarily occupied the upper-right quadrant of the Figures 3A,D Supplementary Figure 1 has all physiological
scatterplot inFigure 2A, but displayed either high or low FV rasters), with multiple downstream e ects. Low excitatoryveri
similarity which overlapped with the range of values displayedrom E5P to I5 and I5L neurons caused them to re slowly. This
by the physiological simulations. Epileptiform simulationadh low L5 inhibition allowed E5a neurons to re quickly. The wea
intermediate average E5P rates due to high activity alteayga ES5P and L5 interneuron interactions produced only weak beta
with periods of quiescence caused by depolarization blockaddythms which were con ned to layer F-(gure 4A).
Across simulation types, higher E5P ring increased the In a representative dystonia simulation, E5P neurons
excitatory drive to 15 neurons, causing increased |5 neurimg had sustained, synchronous, rapid ringFigures 3B,
(Table 8. Higher 15 and E5P neuron ring then caused higher Supplementary Figure 2 shows all dystonia simulation rasters
E5P synchronization via recurrent ESP excitation and feettb This promoted strong, continuous layer 5 interneuron adiva.
inhibition (Figure 2B). Stronger E5P and I5 interactions then The L5 interneurons then suppressed Eb5a intratelencephalic

FIGURE 2 | Distinct dynamics in in physiological, dystonia, a  nd latch-up simulations. (A) Average E5P ring rate vector (FV) similarity vs. average E5fng
rate for individual simulations(B) ESP MUA Beta oscillation amplitude vs. E5P synchrony for imddual simulations.(A,B) [light blue: physiological, purple: dystonia,
orange: epileptiform, black: remaining Active simulatia) large circles represent simulations shown i(C) and Figure 3]. (C) Pearson correlations between all pairs of
E5P FVs. Solid black lines demarcate FVs from example physogical, dystonia, and epileptiform simulations. All FVssed 50 ms intervals, forming 40 FVs per 2 s of
simulation.
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FIGURE 3 | Distinct ring patterns in physiological, dyston ia, and epileptiform (epileptic) simulations. (A) Physiological model has sparse, asynchronous
E5P ring, relatively low 15 ring, and activated E5a/E5b popultéons. (B) Pathological model shows high-frequency, synchronous advity in ESP neurons, causing
higher 15 ring, which suppresses E5a activity(C) “Epileptiform” (epileptic) model shows high-frequency,yschronous activity with intermittent 200-300 ms gaps in
ring of E neurons, caused bydepolarization bIockade(NaC channel inactivation) (A—C) Left Dots represent individual neuron spike times (red: E cellgjue: LTS cells,
green: FS cells). Cells arranged from layer 2/3 (top) to layér(bottom). Scale-bar: 100 ms.(A-C) Right Population ring rates (25 ms bins) arranged vertically to
roughly correspond to position on raster plot to the left. Sale-bar: 40 Hz (Same color code as raster; apparently at lineindicate low variation in ring rate)(D)
Population ring rates from simulations in(A—-C) (Average standard error of the mean).

neurons, which red at reduced rates. In contrast, E5b ring (population-synchronyD 0.83; vertical stripes ifrigure 3B) at
increased with the faster E5P ring, due to excitation spiegd a strong beta rhythm (20 Hz;Figure 4B). These synchronous

in the network. The relatively high recurrent connectivity beta rhythms also spread to other populations and layers (E2, 15
(18% density) and strong synaptic weights between ESBL, E5b, and E6).

neurons allowed the E5P neurons to remain activated despite Epileptiform simulation also displayed strong intermittent
strong feedback inhibition. The strong feedback inhihitio beta oscillations and strong synchrony (population-synclyron
also activated the E5P HCN channels, which produce® 0.05; Figures 3G 4C), but this activity alternated with
rebound excitation. The strong E5P activation coupled wita t lengthy periods (200-300 ms) where E neurons were not ring
feedback inhibition also enabled E5P neurons to synchenizdue to depolarization blockade. Even with these periods of
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FIGURE 4 | Motor cortex models produce different beta oscillat ions. Power spectrum of multiunit activity vectors of examples ifrigure 3. Power (y-axis) in
arbitrary units.(A) Physiological model shows weak beta (22 Hz) oscillations thi power of < 0.1% of the pathological model.(B) Pathological model produces strong
beta (20 Hz) oscillations with additional harmonic at 40 HZC) Epileptiform model produces strong beta (19 Hz) oscillatits with additional harmonic at 38 Hz.

depolarization blockade, most E neurons red at higher agera corner of Figure 6B) and the pathological simulations (upper-
rate than in the physiological simulationg-igure 3D). Such right corner of Figure 6B) demonstrate that there is widespread
increased synchrony with high excitatory cell activityégs in  degeneracy in the parameter sets that produce either the
epilepsy patients\(eisel et al., 200)5In contrast to the dystonia physiological or pathological states. Some of this degepésac
simulations, the synchronous periods of epileptiform osdiflas  unsurprising: for example K channels with similar time courses
were largely con ned to layer 5 and did not spread to other taye of activation can substitute for one another to some extéxter
degeneracy is more complex and involves higher-order dynamic

3.3. Need for Multitarget Approach compensation.

No individual parameter determined physiological vs. dysen . ) ) .
dynamical-condition in the networkRigure 5. Therefore, no 3-4. High Dimensional Separation of
single parameter adjustment would routinely provide an e eeti  Physiological and Pathological Parameters
“treatment” that would reliably restore physiological ad in  Because of the diculty of separating pathological from
most pathological models. We therefore went on to explorg@hysiological with these high dimensional parameter sets,
whether multitarget manipulation would be able to nd such we used a SVM classi cation to create a separation (termed
treatment routes. a maximum margin hyperplane) separating parameter sets
Although no single parameter could predict physiologicalproducing physiological dynamics from parameter sets
vs. pathological dynamics, the outliers of certain indiatlu producing pathological dynamics. We started by training
parameters were predictive. At the pathological marginSVMs using only two parameters in combinatioRigure 7). In
simulations had parameters which are expected to produce higbrder to test the e ciency of this separation, we separated out
activity: high N& or C&C channels promoting inward currents, our target sets (physiological vs. pathological) into twossib
high HCN channel densities providing high resting membraneof each to serve as training and testing sets to evaluate the
potential (RMP), and low R channel densities again producing adequacy of the separation. By trying various random trajnin
depolarization and reduced repolarization with spiking. and testing sets we got a mean and standard error for each
Further evidence for lack of predictability of dynamicscase. Many two-parameter predictions were below chance (0.5)
based on parameters, comes from viewing the parametensdicating that the SVM could not separate physiological from
in all 11 dimensions organized into 2 classes by dynamicgathological based on that parameter pair. Two-parameter SVMs
The parameter space showed substantial heterogeneity in tleuld accurately classify when the parameter pair included
patterns producing pathologyF{gure 6A), with weak intra-class Na density—the strongest predictor of excitability. The best
clustering Figure 6B). Correlation between parameter vectorsprediction came with high Naand low Ky,. Logistic regression
of each simulation averaged 0.06 for physiological simutati methods were also tried to perform this two-dimensional
0.07 for pathological simulations, with weak -0.05 antietation ~ separation but did not perform as well as SVM.
between pathological and physiological simulations. The low Going beyond 2 parameters, SVM classi cation accuracy
correlations in both the physiological simulations (loweft increased regularly with the number of parameters used
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FIGURE 5 | Individual parameters do not distinguish physiolo gical from dystonia activity. (A)  Dystonia (purple) vs. physiological (light blue) simulatis. of
simulations sorted by E5P ring rate Kl D 65 for each group).(B) Cumulative probability distributions for each parametenithe dystonia (purple) and physiological
(light blue) simulations. Parameter values normalized todistribution with zero mean and unit variance (zero mean daenot indicate zero density of a given ion
channel/receptor). Simulations shown are obtained from badm and top 2nd percentile based on dynamic measures.

(Figure 8), suggesting that a multi-target drug approach beyondlimension. Because of this, any high-dimensional method wil
two targets might produce greater e ect. Moving to higher andtend to underestimate predictive strength given a limite coamt
higher dimensional spaces, we checked all possible parametdrdata Bishop, 2006; Noble, 2006

combinations at each dimensionality. IRigure 8 we report This multi-target SVM approach revealed the parameters
the parameter combination that was most predictive—e.g., at hat had the highest contribution to producing or preventing
dimensions we report just one of the 462 combinations of sixystonia. Na density was the most predictive parameter across
from 11 parameters. Looking at the red blocks below, we caall numbers of parameters used (horizontal red stripe at top
identify that the six dimensions that provide best predictare of Figure 8B), as had been also shown using 2 dimensions
Na;, four of the K° channels, and VGCC. Predictability increasesalone Figure 7). Again con rming the 2-dimensional result, the
up through six parameters, then plateaus, and then falls o du@ext most predictive parameters wag, KFollowing these came
to the extreme sparseness of data. This sparseness was du&ipKy, BK, SK, and VGCC densities which also signi cantly
the so-called curse of dimensionality: given a constant bem contributed to accurate predictions, due to their strong ienice

of data points, the density falls o #in-fold with each increase on E neuron excitability. mGLUR, RYR, anghidensities showed

in dimension, where Bin is the binning of the space in one lesser contributions.
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FIGURE 6 | All parameters of pathological and physiological s imulations reveals weak intra-class clustering. (A) 11-dimensional parameters for
physiological and pathological simulations. Colorbar isermalized parameter values as irrigure 5. (B) Pearson correlations between all pairs of parameter vecter

FIGURE 7 | Support vector machine classi cation accuracy of p athological vs. physiological simulations using two paramet er values has high levels
for certain parameter combinations (e.g., including Na  channel density) but overall accuracy is often below chance ( 0.5). (A) Accuracy as a function of
speci c parameter combinations [indicated at same horizoral location in(B) (Red indicates parameter (param) was used for classi catigrblue indicates the
parameter was not used)] (solid line: mean cross-validatioaccuracy ( D 10); dotted line: standard error of cross-validation accuraes).

Increasing the percentile cuto s for categorizing physiatad  shows the same resultBijure 8 accuracy increased (colormap)
from pathological simulations from the 2nd percentile to 7thas one goes from fewer to more parameters (bottom to top).
percentile decreased prediction accuracy but still dematestr By including more exemplars on both the physiological and
the value of multitarget change&igure 9. The left column pathological sides, we moved away from the best exemplars
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FIGURE 8 | SVM classi cation accuracy generally increases w hen using 1-10 parameters, indicating utility of multitarget pharmacy approach to
treating dystonia. (A) Best classi cation accuracy from all combinations ofx parameters (solid line: mean cross-validation accuracyi(© 10); dotted line: standard
error).(B) Best parameter (param) combinations (red: parameter usedjlue: parameter not used). x-axis if(A,B) indicates number of parameters used.

and obtained less distinction between the two parameter. setgectors with low correlationRigure 6). We therefore turned to a

However, at all percentiles, there was an initial increase i8VM classi cation to identify hyperplanes in high-dimensidna

classi cation accuracy with continued increase up to ordr&y space that would separate the two populations. As expected,

3 parameters. This increase then declined as the numbéne major spike generating channels, {Nand Ky were the

of parameters increased further due to the aforementione@rimary determinants of excitability, followed by additiain

sparseness at high dimensionality. potassium channels and calcium channels. We did not assess
pharmacological e ects on synapses, which would be useful to
do in the future.

4. DISCUSSION

We developed a multiscale model of primary motor cortex4-1. Biological Degeneracy and

to explore multitarget pharmacological therapies for dystoni Personalized Therapy

We searched parameter space—channel and receptor densitie®egeneracy of mechanism is a major theme in bioldgyslman

to create a set of models to contrast dystonia dynamics witand Gally, 200}l meaning that there are many di erent ways
physiological dynamics. Dystonia simulations displayed higlhat a biological system can produce a particular shape in the
excitability and synchrony in layer 5 corticospinal neuronscase of an immunoglobulin, or a particular dynamics in theecas
(E5P), and strong beta oscillations which spread betweenf a neural system. Such degeneracy has been shown directly i
cortical layers Figures 3B 4B). Dystonia simulations could be the stomatogastric ganglion of lobster, where a particukdt ¢
distinguished from epileptiform simulations primarily by the type produces its stereotyped dynamics using many di erent
presence of periods of latch-up with depolarization blockadeombinations of ion channel densitiesG¢lowasch et al.,

in the epileptiform simulations. Physiological simulations2002. Associated with this degeneracyfélure of averaging-

had low excitability, asynchronous ring, and weak betaaveraging across parameter sets that produce the dynamics
oscillations Figures 3G 4C). Attempts to use high-dimensional gives a set of parameter values that do not produce the same
visualization techniques to nd potential therapeutic ditems  dynamics.

in the parameter space were limited by the solution degeneracy In the context of brain physiology, this means that we
in the 11-dimensional parameter space with scattered parametean expect that individuals dier in the details of how their
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require a larger number of simulated patients than we have thu
far accumulated.

4.2. Multilocus, Multitarget, Multiscale

Approaches for Treating Dystonia
In general, single target pharmacology has not been e ective in
dystonia Fahn, 198). As in other complex diseases, many of
the treatments for dystonia have highly variable e ectivesand
must be used at high doses that produce side-e edtskovic,
2009. For these reasons, botulinum toxin, targeting the nal
endpoint —the muscle movement—is commonly used as a
treatment (Jankovic, 2006; Sanger et al., 2007; Bragg and Sharma,
2014. Deep-brain stimulation, an invasive procedure, is also
used to partially restore normal brain dynamic$a(sy, 2007;
Johnson et al., 2008; Air et al., 2011; Bhanpuri et al.,)2014
Multilocus, multitarget approaches may be particularly
useful in movement disorders because movement produces
coordination by utilizing coordination among multiple brain
areas including the basal ganglia, thalamus, cerebellumpsg

FIGURE 9 | SVM classi cati [ ith .
! classi cafion accuracy increases with more and motor cortices leychev et al., 2008; Crowell et al., 2012;

parameters then decreases due to “curse of

dimensionality"—sparseness of parameter vectors relative t o} Delnoo; and Val’.l de Warren_burg, 201P_ath_0|09y within any
dimension. Best classi cation accuracy from all combinations ofy one region, or disturbances in communication between any of
parameters (params) using bottom/top SPI ring rate percenkes on x-axis. the regions can potentially lead to disorders. To begin to adslr

these multiple challenges, we focused our computer modeling
here on a multiscale model of motor cortex and multitarget
pharmacology based in this one area. In the future, this madlel

motor cortex produces oscillations and contributes to moeain . .
be expanded to encompass more areas and will include synaptic

Similarly, we can expect that individuals di er in the details )

their pathology. From a pharmacological perspective this aguéeceptor targets in each area.

that we may see greater benet from personalized medicine—

identifying the high-dimensional complex of pathological AUTHOR CONTRIBUTIONS

parameters in a particular patient in order to treat them with

their own individualized cocktail of multitarget drugs toguiuce

a dynamics that falls somewhere in the physiological regiroe.

this might also be added complementary individualized, perhaps

multi-locus, brain stimulation Kerr et al., 2012; Song et al., ACKNOWLEDGMENTS

2013; Chadderdon et al., 2014; Hiscott, 2014; Nelson and, Tepe

2014; Dura-Bernal et al., 2016uch a personalized approachThe authors would like to thank Ben Suter and Gordon

would require much more intensive, and more costly, diagitost MG Shepherd (Northwestern University) for help with the

procedures of a type that is currently only used by epilepsynodel; Tom Morse (Yale) for ModelDB support; R.A.N. for

surgery centers, which typically require invasive methoals thelpful suggestions. The authors declare no competing ndncia

perform their diagnostic tests. interests. Research supported by NIH grant RO1 MH086638,
Due to the degeneracy, parameter averaging failed in ouMIH grant U01 EB017695, NIH grant RO1 NS064046, NIH grant

dataset—using the average of all parameters sets that produd@l DC012947. The NIH had no role in study design; in the

pathological simulations does not give a pathological sitimta ~ collection, analysis and interpretation of data; in the wngfi

However, the ability of the SVM method to separate patholdgiceof the report; and in the decision to submit the article for

from physiological populations in high dimensional parameterpublication.

space does suggest that there may be some bene t to pushing all

patients in that direction through a multitarget pharamacgical SUPPLEMENTARY MATERIAL

cocktail. In future studies, we plan to test this explicitly et

simulations in order to determine what percentage improve,;The Supplementary Material for this article can be found

what percentage worsen and what percentage remain essgntiahline at: http:/journal.frontiersin.org/article/10389/fphar.

unchanged with such an average treatment. This assessnikent 2016.00157
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